Fórmula 1
Análisis aerodinámico de un Fórmula 1 mediante Dinámica de Fluidos Computacional (CFD)
Cada día, los ingenieros de los diferentes equipos tratan de mejorar la aerodinámica de los monoplazas con el objetivo de ser más competitivos. En los últimos años hemos visto una evolución en la aerodinámica muy grande, donde los equipos cuidan todos los detalles y ya no solo se centran en los alerones delantero y trasero sino que van mucho más allá, incorporando elementos minúsculos con el objetivo de ganar alguna décima en los circuitos.
En este artículo se explican los aspectos más importantes de la aerodinámica de un Fórmula 1, realizando una simulación sencilla de un modelo de Fórmula 1 mediante el software OpenFOAM a través de Simscale.
Antes de comenzar a comentar la simulación y los resultados obtenidos, es necesario explicar brevemente algunos conceptos importantes de la aerodinámica.
Flujo externo: produce zonas de presión y depresión además de rozamiento viscoso (rozamiento debido a la viscosidad del aire, que es una propiedad del fluido que introduce fuerzas sobre el vehículo) con las paredes del vehículo generando:
- Resistencia al avance.
- Carga sobre las ruedas.
- Variaciones en la estabilidad.
- Ruido
Flujo interno: es el encargado de refrigerar el habitáculo y el motor.
Flujo laminar: es característico de velocidades de circulación bajas. En él, las partículas se mueven en trayectorias uniformes deslizándose entre ellas.
Flujo turbulento: es característico de velocidades de circulación altas. En él, las partículas del aire se mueven en trayectorias irregulares generándose un intercambio de cantidad de movimiento en el aire.
Por otro lado, el flujo puede estar:
- Adherido a la superficie del vehículo: se prefiere adherido ya que reduce la resistencia aerodinámica y/o genera carga vertical.
- Separado de la superficie.
Resistencia por presión: en las zonas cóncavas se generan presiones positivas mientras que en las zonas convexas, las presiones son negativas. Esto se puede ver en el análisis del coeficiente de presión a un coche del DTM.
Las zonas con colores más cálidos representan presiones positivas mientras que los colores azulados son presiones negativas.
Resistencia debida al rozamiento: por efecto de la viscosidad del aire.
Resistencia total avance, que depende de la densidad del fluido, el área frontal del vehículo, la velocidad de circulación y un coeficiente aerodinámico que depende de la forma de coche.
La influencia de la parte trasera sobre dicho coeficiente es mucho mayor que en la parte delantera. Al avanzar el vehículo se produce una depresión que provoca una fuerza de arrastre en contra del avance. En la parte trasera se generan unos vórtices de Karman que hay que evitar ya que producen inestabilidad.
También se ha de tener en cuenta la influencia de los neumáticos ya que el giro de las ruedas provoca inestabilidades en el flujo de aire, por ello en la Fórmula 1 siempre se pretende redirigir el flujo en las zonas próximas a los neumáticos.
Fundamento del uso de alerones: el aire de la zona inferior del alerón tiene más velocidad que el de la zona superior. La resultante es una fuerza de sustentación que genera mayor carga vertical sobre las ruedas mejorando el paso por curva.
Difusor: permiten reducir la presión en el suelo del monoplaza y crear una succión incrementándose la sustentación.
Una vez explicados los principales conceptos a nivel aerodinámico, vamos a detallar la forma de trabajar para realizar un análisis aerodinámico.
En primer lugar se realiza un modelo en CAD, es decir, utilizando un programa de diseño se modeliza el vehículo en 3D. Normalmente se emplea el software Catia por ser muy completo aunque existen otras alternativas como Solid Edge. En este caso se modeliza un Fórmula 1 más antiguo que contiene muchos menos elementos aerodinámicos con el fin de agilizar los cálculos.
Posteriormente se implementa el diseño en un programa CFD como OpenFOAM en este caso. En él, se realiza el mallado del vehículo, que consiste en discretizar el modelo en volúmenes finitos con el fin de analizar de forma más exhaustiva el comportamiento del aire alrededor del coche. También se establecen las condiciones de contorno, que son las condiciones en las que ensayamos el coche, es decir, velocidad del aire, temperatura, presión ambiental y un sinfín de parámetros. Cabe destacar que en este artículo se realiza un resumen del proceso, ya que en el realidad lleva cientos de horas realizar los modelos.
Tras realizar el mallado y establecer las condiciones de contorno (entre otras muchas cosas), se procede a realizar el cálculo. Se utilizan superordenadores para este apartado ya que los modelos a analizar son muy complejos y el tiempo de cálculo es elevado. En este caso se han utilizado 32 núcleos y 60 GB de RAM.
Una vez obtenidos los resultados (el ordenador puede tardar días), se procede a analizarlos.
En este caso se muestra la distribución de presiones a lo largo del monoplaza.
Como se puede observar, la zona del alerón, los pontones y las ruedas delanteras son las que tiene una mayor presión por encontrarse directamente expuestas al flujo de aire. Esto supone una mayor resistencia al avance.
Otro parámetro que se debe analizar es la velocidad del aire alrededor del monoplaza.
Como se puede observar, las estelas del aire no siguen un patrón fijo sino que se deslizan a través del Fórmula 1, salvando los obstáculos como ruedas o pontones. Las zonas rojas corresponden a velocidades del aire mayores mientras que las zonas con colores más fríos corresponden a velocidades menores.
Este parámetro también se mide en los túneles de viento y en los test se utilizan los famosos tubos de pitot, los cuales miden la velocidad del aire en determinadas zonas a partir de los datos de presión a la entrada y la salida de los mismos.